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1. INTRODUCTION

This paper is concerned with the approximation of e~* by its Padé¢
approximants. Error bounds are obtained for z = jw, where j is the purely
imaginary unit and w € R. By employing a similar method of Braess [1],
it can be shown that, for m and » belonging to No= {0, 1, 2, ...} such that
m+2z=n,

nlm!
n+m)l(n+m+1)!

Ie_jw_Rmn(jw)' < wn+m+l (1)20,

where R,,(z) is the (m,n)-Padé approximant of e . The results presented
are related to those of Braess [1]; of Newman [3], which concern with
approximation on the interval [ —1, 1], and of Trefethen [5] on a disk.
The results here contrast to theirs by considering approximation properties
along the imaginary axis, and by deriving tight error bounds which are not
asymptotic in nature. Moreover, only elementary mathematical induction
technique is involved.
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PADE APPROXIMATIONS OF €~ °
II. MAIN RESULTS
We start by considering the (m, n)-Padé approximant of ¢ ™7, where

m,ne N, given by Perron [2] (see also Braess [1] and Petrushev and
Popov [4, p.96])

"’l"(z
Rmn(.2)=p ),
qmn(:}
where
Ponlz)= | t(1—z)"e " dt (1)
ey
‘Imn(Z):j "t +zYe " dt. {2}
1]

Here R, (2) is a rational function with numerator and denominator degree
equal to m and #, respectively. Then, we have the following proposition.

PROPOSITION 1. For m,ne N, and w =0,

na-mt+ 1

. o)l < nlm!
qmn(.]O))‘pmn(]w \(n+m+1}'

—jw

le
Proof. Since
€ G n(2) = Prun(2)
:JP: (14 z)"e” "t dt'j: r't—z)"e”" dt

~0
— ___J (t+Z)ntme—(t+z) dt

—Z

=(__Z)n+m+1 Jl (ll— 1)nurne(u41)z du
V]

1
= (—U”’“z"“”“f (1 —u)rume V7 du,
0

then
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1
€™ Gmnl@) =P @) = |21 | (L —0uel = du

|n+m+l

1
=z fo W'(1—u)"e=" du

1
Slz(n+m+1 [ un(l_u)m le——uzl du
Y0

1
<|Z|n+m+1 max 'e—uzlf M"(l—l«l)mdll
0

Osux<l
nim!
=lz|n+m+1 max Ie—uzl —_—
O<usl (n+m+ 1)
For z=jow, =0, we have
max |e *|= max |e /=1
O<uxl Osuxl

and hence the resuit follows. J

The upper bound in Proposition 1 is tight since it corresponds to exactly
the first non-zero error term (see also Petrushev and Popov [4,
pp. 96-981]).

Now our objective is to find a lower bound for |g,,,(j®)|. In order to
achieve this goal, we need a recurrence formula for the expression of
|q,mn(j@)|* which is given in the following lemma.

LEmMMA 2. Let

0 2
Km,n(w>:=lqmn(jw)l25,f {1+ jo) e di|
Y0

then

Km,n+ 1(0)) = Km+ I,n(w) + szm,n(w)

—o'nm+n+1)K,, ,_ ()
— @’ (= 1)Ky 1o (@) @ n(n=1)K,, (@) (3)

Proof. Let g, ,(z)=q,,,(z); then
G, n{JO) 1=f (1t +jw) e dt
0

20 o0
=j t”’+‘(t+jcu)"*1e—’dt+jwj "t +jw) e dr
4] Q

=qm+1,n~1(jw) +jwqm,n—l(jw)' (4)



PADE APPROXIMATIONS OF ¢ ¢

Also
Qi) =[ (e +jo)e dr
0
= [__[m(t_{_ja))ne—t]sc + iﬂ ; €7ld[im(!+j(1))"]
<0

=J J [mt™ = Yt +jo) +nt™(t +jo) ~ Te " dt
0
= mqu l,n(.jw) + nqm,n—f(joj)'

Now, by the definition of X, ,(w), we have

Kyn(©) =g, (j0) g, o — )
=Gt 101 (JW) +jOG - 1 (j0))
XG4 1,0 1 (—JO) = jOG 1 (—j0))
=K, 10 1(@)+ 0K, (@) +joL,, ,_{(jo)

after expansion and with

Lm,n(jm) = qm,n(jw)qm + l,n( —jCl)) - qm+ l_n(Jiw)qm,n( —JU))

From (4) and (5), we have

D n{JO) G 1,0 —J0)

= (G + 10— 10J0) +j0G o (o)) (M + 1) g, o (—jw)
+ 1G4 10— 1 (—j@)]

=G+ 10— 1(J0) +j0G 1 GO (M + 1)@ 10— 1 (—J0)
—JOG -1 (—J@)) +1G  1w—1 (—J0)]

= (G + 10— 1 (JO) +J0G 1 G+ 1+ 1) G 1y (—J0)
—jo(m + 1195 (—j0)] '

=(m+n+ 1)K, - i(0)+ (m+1)o’K,, ,_1(0)
+jol(m+n+1)gmn1(JO) G 1,01 (—j0)
— M+ 1) G 1,0 1(J0)gmn1(—j0)]

(6)



226 LAM AND CHUNG

Taking the conjugate of (7) we obtain
Ginyn( —JO) G 41, {JO)
=m+n+ 1)K, , (@) +(m+1)o’K,, ,,_(w)
—jolm+n+1)gp, 1 (—j0)gm s 10— 1(jO)
—(M+ )G 1,0 1(—J0)pn 1 (@) (8)
Subtracting (8) from (7) and by the definition of L, ,(jw), we have
L, n(J0) = G, n(JO) @i 4 1.0 —J®) = G 1,0 (JO) G, n( —J@)

=jw[nqm,nf l(jw)qm+ 1l — 1(—]&)) + Aqp 10— l(jw)qm,n—l(_jw)
=ja)nl)m,n—— l(jw)’

9)
where
Py () := G n(JO) G+ 1.0 —J®) + G 1 1,0 JOV G —J0).
By adding (7) and (8), we have
Py n(J®) = G () s 1 1.5 (—JO) F G 1,0 (JO) G, —J0)
=2(m+n+ 1)K, ,_(@)+2(m+1)0’K,,, (o)
+jo2m 4 n+ 2)[ g, 1(j©)gm 111 (—j0)
~Gms 101D Gpn— 1 (—j0)]
=2m+n+ 1)K, 1, (@) +2(m+ 1)K, ,_ (o)
+jo(2m+n+2)L,, ,_ (jo). (10)

From (6), (%), and (10), we obtain
Kopns (@) =K, 1 1.1(@0) + ©°K,,, ,(0) + jOL, ,(j2)

=K, s 1.0(@)+ 0K, ,(0)— &’nP,, ,_ (jo)

=K, s 1.0(0) + 0°K,, (0)=20’n(m+n)K, , (o)
—2w'n(m+ 1)K, _(0)—jo’n(2m+n+ 1)L, ,_,(jo)

=K, 1 1.0(@) + 0°K,,, ,(0) = 20°n(m + 1)K, ;1 5 2(®)
—2w'n(m+ 1)K, ,_>(®)—o’n(2m+n+1)[K,,,_1(®)
=Ky 10— 2(0) = 0*K,,, ,_5(@)]

=K, 1..(0)+ 0K, (0)—’n(2m+n+ 1)K, ,_(®)
—’n(n— DK, 1, 2(@)+o'n(n—1)K, , (o)

after simplification. |}



PADE APPROXIMATIONS OF ¢~ 227

From the recurrence formula in Lemma 2, we obtain the following
proposition regarding the modulus of g,,,(jo):

PrOPOSITION 3. For m,ne Ny, |g,,,(jol>=K,, (o) is given by

n—1 -
(m!)? [Z ( >l—[ m—r+i)m+i)o* +Q”’J for n=1

r=0

Km,n(w) =
(m!)? for n=0.

(i1}
Proof. We use proof by mathematical induction on n. For n=0 and
me N,, we have the LHS of (11) as
'2

|qmn(jw)|2= ‘J‘Q tme ! dti = (’n!)z.

while the RHS of (11) gives also (m!)>. Similarly, for n=1, K, ,(w}=
(MY [(m+1) +*] and for n=2, K, ,{w)=(m!)* [(m+1)? (n~+4)3+
2m(m+ )’ + w*]. Tt is easy to verify that (11) gives the same expres-
sions.

Assume that the proposition is true for n=4, h— 1, h — 2, where he N,
h=2, and meN,. Then from Lemma 2, we have

Km.h+ 1= Km+ 1,h + szm,h - C[)Zh(zn’l + h + I)Km.h—- 1
~@?hh— 1)K, 14 2+ 0*hh— 1)K, , 5, {12

where we have dropped the argument w for clarity. Now, we examine the
coefficients of w* (r=0,1,..,h+1)in K,, ,,; by considering (12).

The constant term (»=0) is equal to that of X, , (from (12}) which
is [(m+ 1+ h)!]% This is given by the proposition with 2 =5+ {. The coef-
ficient of w” on the RHS of (12) is given by

h—1
[m+ IR [] (m+im+1+0)+ [(m+ h)1]?
i=1
—h2m+h+ D) [(m+h—INP —bh—=D[(m+h—1)77
=[m+h—1)7? [h(m+ 1)(m+ h)
+(m+h)Y?—hQ2m+h+1)~h(h—1)]

=[m+h— 1NV (h+ Hym(m+h)
h

=(m!)’ (h+1) [] m—1+D(m+i)

i=1

which is the coefficient of w? in (11) when n=h+ 1.
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For w?, where 2<r<h— 1, the coefficient is obtained from (12) as

h—r
[(m+1)!]2<il> [T m+1—r+i)m+1+10)

i=1

+ (m!)y? <rf1> Hlif (m—r+1+im+i)

h—r

—h(2m+h+ 1)(m!)? <h 1> I m—r+14+i)m+1i)

—h(h=1)[(m+ )T (h f) ‘f[ (m+2—r+D)(m+1+1)

h—r

+h(h—1)(m')2( 2)]—[ (m—r+2+im+i)

i=1

= (m!)? l:[ m+1—r+i)(m+i){(m+1)(m+1+h—r)<il>
+ (m— h)(m+1+l1—r)( ]1)}

= (m!)? (h_: 1) +l—1[—r (m—r+i)m+i)

i=1

which is the coefficient of w* for 2<r<h—1in (11) with n=h+ 1.
Now, consider the coefficient of w*. From (12) we obtained the coef-
ficient as

[m+ ]2+ (m)h(m—h+2)(m+1)
—h(2m+h+ 1)} (m!) + h(h— 1)(m!)?
=m)* (h+1)(m—h+1)m+1)

which is the coefficient of w? in (11) when n=h + 1.

Finally, the coefficient of w®*2 in (12) is (m!)* which is also that of
®?*21in (11) with n=h + 1.

Hence, we have shown that the expression in (11) is also true for
n=h+1 if the cases n=h, h—1, h—2 are true with meN,. By the
principle of mathematical induction, we can conclude that (11) is true for
all myneN,. |

The following result gives a lower bound for |g,,..(jw)| as a corollary of
Proposition 3.
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COROLLARY 4. For m,ne N, such that m +2>n and w >0,
|G mn(JO) Z 19, (0)] = (2 + 1),

Proof. From (11), the coefficient of w*, where » <n, is given by

(m!)? (’:) I =+ i)m+4)

i=1

which is non-negative as long as (m—r+1)>0. This requires that
m—n+220 for all coefficients in |g,,,(jw)|? to be non-negative. Hence,

| (j0)? = Koy (@) = K,y o (0) = [(m +1)!] = g, (0)% K

It is well known that for m + 2 > n, the denominator g,,,(z) is analytic in
the open RHP (see Saff and Varga [6], for example). In fact, from
Corollary 4, we can see that m + 2 >n gives all coefficients in g,,,(jw) non-
negative for this class of Padé approximants. Now, we can state the main
result as follows.

THEOREM 5. For m,ne Ny such that m+2>n and v =0,

nim! o 13
< wi’l it l. !: 3
'\(n+m)!(n+m+1)! )

le_,-a, _ Ponljo)
Gmn(J©)

Proof. From Proposition 1, we have for m,ne N, and w =0

—jw ( Cl)) ( CO)| <___{1__‘.};n.'___
qmn.] pmn] \(n+m+1)'

Ie n+m+1

Also, Corollary 4 gives

1 1
<
| gmn ()|~ (m +n)!

when m + 2 = n. Hence, the result follows. |

The result in Theorem 5 is tight from the derivation shown with equality
holding when w = 0. The upper bound in Theorem 5 corresponds to exactly
the first non-zero coefficient of the error in terms of its Maclaurin series
expansion. For example, with m=2 and n=3, we have

o PnU@)| U 37T o 47153 o
¢ g2y 7200 5880000 © T 518616000000 ” :
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while the RHS of (13) gives
1

34241 __

3121

6
G+2)3+2+10” 7200 “

In passing, it is remarked that when n —2<m<n,

e,jw_pmn(jw)

<2 14
P (4

which results from the A-acceptability of Padé approximations to e, since

Gmn(Jo)

(see Wanner et al. [7]). In this case, it is obvious that the bound in (13)
is weak for large . Indeed, this is generally true for all cases when w
is large since the LHS of (13) is at most of order w™~". Based on the
observation in (14), we state the following proposition as a consequence.

PROPOSITION 6. For m,ne N such that n—2<m<n and o =0,

i 'm!
Ie—jw_””_"(J_w_)lgmin(z’( hm wn+m+l)' I

G JOO) n+m)l(n+m+1)!
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