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I. INTRODUCTION

This paper is concerned with the approximation of e -z by its Pade
approximants. Error bounds are obtained for z = jw, where j is the purely
imaginary unit and w E~. By employing a similar method of Braess [1],
it can be shown that, for m and n belonging to No = {O, 1, 2, ... } such that
m+2~n,

. n!m! I

!e-
JOJ

- Rm"Uw)1 :::; (n +m)! (n + m + 1)! w,,+m+ , w~O,

where Rm,,(z) is the (m,n)-Pade approximant of e- Z
• The results presented

are related to those of Braess [1J; of Newman [3], which concern with
approximation on the interval [-1, 1], and of Trefethen [5] on a disk.
The results here contrast to theirs by considering approximation properties
along the imaginary axis, and by deriving tight error bounds which are not
asymptotic in nature. Moreover, only elementary mathematical induction
technique is involved.
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H. MAIN RESULTS
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We start by considering the (m, n)-Pade approximant of e - =, where
m, n E ~~o, given by Perron [2J (see also Braess [1] and Petrushev and
Popov [4, p. 96J)

where

qmn(Z) = f'" tm(t + z)"e- rdt.
o

Il)

(2)

Here Rml/(z) is a rational function with numerator and denominator degree
equal to m and n, respectively. Then, we have the following proposition.

PROPOSITION 1. For m, n E No and OJ ~ 0,

. n!m! +'
1 -JW (.) (')1 ~ n+nl ,e qnm jW - Pmn JOJ ",. 1)I OJ .

(n+m +.

Proof Since

= J'XJ t"'{t +zt e-(t +z) dt - fOO tn(t - zY' e- r dt
o 0

.0=_j (t+z)" tme-u+ z1 dt
-z

= (_z)"+m +-1 f: (u - lYume(u-lI z du

1
={_l)m+1 Z n+m+ 1f (l_u)"unle(u-liZdu,

o

then
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le-Zqm,,(z) -Pm,,(z)1 = Izl,,+m+ 1 IJ
o

l

(1- u)"ume(u-l)z duj

= Izl,,+m+ 1 II: u"(l- u)me-UZ duj

~ Iz!,,+m+l Cu"(l-u)m le-uzi du
'0

~ Izl,,+m+l max le- lIz lru"(l-uyn du
O::%;u~l 0

n!m!
= Izl,,+m+ 1 max le-uzl-----

0,;;; 1I 0 (n+m+1)!

For z = jw, w ~ 0, we have

max le- lIz l = max le-ill"'l = 1
O~u~l O~u~l

and hence the result follows. I
The upper bound in Proposition 1 is tight since it corresponds to exactly

the first non-zero error term (see also Petrushev and Popov [4,
pp. 96-98]).

Now our objective is to find a lower bound for Iqm"Uw)l. In order to
achieve this goal, we need a recurrence formula for the expression of
Iqm,,(jwW which is given in the following lemma.

LEMMA 2. Let

Km,,,(w):= Iqm,,(jwW= 1.faX> tm(t+jw)"e- t dtj2,

then

Km,,,+ I(W) = Km+ 1,,,(W) + w2Km,,,(w)

-w2n(2m + n + l)Km.,,_ dw)

- w 2n(n -1)Km +1."-2(W) + w 4n(n -1)Km,"_2(W). (3)

Proof Let qm,,,(z) =- qm,,(z); then

= qm+ 1,,,-I(jW) +jwqm,"_1 (jw). (4)
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Also

= [-tm(t+jW)ne-t]c;x: + roc e-td[tm(t+}wrJ
'0

= mqm -1,n(jW) + nqm,n_! (jw).

Now, by the definition of Km.n(w), we have

(5)

Km,n(w) = qm,n(jw )qm,n( - jw)

= (qm+ l,n-l (jw) +jwqm,n.-l (jw))

x (qm+ l,n-l (-jw) - jwqm.n-l( -jw))

= K m+ l,n- 1(w) + w 1Km,n- 1(w) +jwLm.n_ I (jw) (6)

after expansion and with

From (4) and (5), we have

qm.n(jw )qm + l,n( - jw)

= (qm+ 1, n- 1(jw) +jwqm, n_ 1(jw) ) [ (m +1)qm, n( - jw )

+nqm+l.n-l( -jw)]

= (qm + l,n- 1(jw) +jwqm.n-l (jw) )[(m + 1)(qm + l,n- 1( - jw)

- jwqm,n- 1 ( - jW)) + nqm+ l,n- 1 ( - jW)]

= (qm + l,n-l (jW) +jwqm,n- 1(jW))[ (m + 11 + l)qm+ I.n- J ( -jw)

- jw(m + 1)qm,n-l ( - jw)]

= (m + n + 1}Km+Ln-l(W) + (m + 1)w2K m,n_l (w)

+ jw[(m + n + l)qm,n-l (jw)q m+ l,n- 1 ( - jw)

- (m + 1)qm + l.n-1 (jw )qm,n _I ( - jw)]. (7)
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Taking the conjugate of (7) we obtain

qm,n( -jw)qm+ l,n(jW)

= (m + n + l)Km+1.n-1 (w) + (m + 1)w2Km,n_I(W)

- jw[(m + n + l)qm,n-1(- jw )qm+ l,n-I(jW)

- (m + 1)qm+ I,n-I (-jw )qm.n-I (jw)]. (8)

Subtracting (8) from (7) and by the definition of L m. n(jw), we have

L""n(jw) = qm,n(jw )qm+ I.n( - jw) - qm+ l,n(jW )qm,n( - jw)

= jw[nqm,n-I (jw )q",+ I.n-I (-jw) + nqm+ 1.n-1 (jw)qm,n-I (-jw)

where

= jwn Pm,n _ I (jw), (9)

By adding (7) and (8), we have

Pm,n(jw) = qm,n(jw)qm+ I.n( -jw) + qm+ l,n(jW)q""n( -jw)

= 2(m + n + l)Km+I,n-I (w) + 2(m + 1)w2Km,n_1 (w)

+ jw(2m + n + 2)[qm,n_I(jW )qm+ I,n-I (- jw)

-qm+l,n-I(jW)qm,n-l( -jw)]

= 2(m +n + l)Km+I.n-I(W) + 2(m + 1)w2Km,n_l(w)

+ jw(2m + n + 2)Lm,n_I(jW). (10)

From (6), (9), and (10), we obtain

Km,n+ I (w) = Km+l,n(W) + w 2Km,n(w) +jwLm,n(jw)

= Km+l,n(W) + w2Km,n(w) - w 2nPm,n-I (jw)

= Km+l,n(W) + w 2Km.n(w) - 2w2n(m + n)Km+l,n-2(W)

-2w4n(m+ l)Km,n_2(W)-jw3n(2m+n+ 1)Lm,n_2(jw)

= Km+l,n(W) + w2Km,n(w) - 2w2n(m + n)Km+l,n-2(W)

- 2w4n(m + l)Km,n_2(W) - w 2n(2m + n + 1)[Km,n-I (w)

- Km+l,n-2(W) - w2Km,n_2(W)]

= Km+1.n(w) + w2Km,n(w) - w2n(2m + n + l)Km,n_l(w)

- w2n(n - l)Km+1. n_2(W) + w4n(n -l)Km,n-2(W)

after simplification. I
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From the recurrence formula in Lemma 2, we obtain the following
proposition regarding the modulus of qmn(jW):

PROPOSITION 3. For m, nE No, Iqmn(jw)i 2== K""I1(w) is given by

T , _ {(m!)2 [l1f C) 'r{ (m - r + i)(m + ila/r + w
2n ]

Km,n\w)- ,.~o I~I

(m!f

for n?o 1

for n =0.
{"' ,
\ 1 I }

Proof We use proof by mathematical induction on n. For n = 0 and
mEN 0' we have the LHS of (11) as

Iq",n (jw )1 2 = IfX t"'e-- I dt i2 = (m! )2.
o I

while the RHS of (11) gives also (m! f Similarly, for n = 1, Km,l (w) =
(m!f [(m+ 1)2+ w2J and for n=2, Km.2(w) = (m!f [(m+ 1)2 (m+2)"+
2m(m + 1)w2 +w 4

]. It is easy to verify that (11) gives the same expres­
SlOns.

Assume that the proposition is true for n = 11, h - 1, h - 2, where h E r~o,

h?o 2, and mE No- Then from Lemma 2, we have

K",.h+ I = Km+I,h + w2K..,h - w2h(2m + h + 1)Km.h_ 1

-w2h(h-l)Km+Lh_2+w4h(h-l)Krn,h __ 2' (12)

where we have dropped the argument w for clarity. Now, we examine the
coefficients of w2,. (r = 0, 1, , h + 1) in Krn,h + I by considering (12).

The constant term (r = 0) is equal to that of K", + Lh (from (12)) which
is [(m + 1 + h)!Y This is given by the proposition with 11 = h + 1. The coef­
ficient of w 2 on the RHS of (12) is given by

h-l

[(m+l)!J 2h n (m+i)(m+l+i)+[(m+h)!J 2

i~l

-h(2m+h+ 1)[(m+h-l)!]2-h(h-l)[(m+h-l)!]"

= [(m+h-l)!J 2 [h(m+ 1)(m+h)

+ (m +h)2 - h(2m + h + 1) - h(h -l)J

= [(m+h-l)!f (h+ l)m(m+h)

h

= (m!)2 (h + 1) n (m - 1 + i)(m + i)
i=l

which is the coefficient of w 2 in (] 1) when n = h + 1.
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For w2r, where 2";;;r";;;h-1, the coefficient is obtained from (12) as

(h) h-r
[(m+1)!]2 n (m+1-r+i)(m+1+i)

r 1=1

(
h )h-r+l

+ (m!)2 r _ 1 PI (m - r + 1 + i)(m + i)

(
h-1) h-r

-h(2m + h + 1)(m!)2 r-1 PI (m- r+ 1+ i)(m + i)

(
h-2) h-r-l

-h(h -l)[(m + 1)!]2 r-1 PI (m + 2 -r+ i)(m + 1 + i)

(
h -2) h-r

+h(h-1)(m!)2 r-2 PI (m-r+2+i)(m+i)

h-r { (h)=(m!f PI (m+1-r+i)(m+i) (m+1)(m+1+h-r) r

+ (m-h)(m+ 1+h-r) (,~ I)}

(
h+ 1) h+l-r

=(m!)2 r PI (m-r+i)(m+i)

which is the coefficient of w 2r for 2,,;;; r";;; h - 1 in (11) with 11 = h + 1.
Now, consider the coefficient of W

2h
• From (12) we obtained the coef­

ficient as

[em + 1)!]2 + (m!)2h(m -h + 2)(m + 1)

- h(2m + h + 1)(m!)2 + h(h -l)(m!f

= (m!? (h+ l)(m-h+ l)(m+ 1)

which is the coefficient of W
2h in (11) when 11 = h + 1.

Finally, the coefficient of W
2h + 2 in (12) is (mW which is also that of

W
2h + 2 in (11) with 11 = h + 1.
Hence, we have shown that the expression in (11) is also true for

11 = h + 1 if the cases n = h, h - 1, h - 2 are true with mE No. By the
principle of mathematical induction, we can conclude that (11) is true for
all m, 11 E No· I

The following result gives a lower bound for Iqmn(jw)1 as a corollary of
Proposition 3.
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COROLLARY 4. For m, n E No such that m + 2 ~ nand w ~ 0,

Proof From (11), the coefficient of w 2r
, where r < n, is given by

(m!)2 C) X( (m - r + i)(m + i)

229

which is non-negative as long as (m - r + 1) ~ O. This requires that
m - n + 2 ~ 0 for all coefficients in Iqnm(jw Wto be non-negative. Hence,

It is well known that for m + 2 ~ n, the denominator qm,,(z) is analytic in
the open RHP (see SafT and Varga [6J, for example). In fact, from
Corollary 4, we can see that m + 2 ~ n gives all coefficients in qm,,(jw) non­
negative for this class of Pade approximants. Now, we can state the main
result as follows.

THEOREM 5. For m, n E No such that m + 2~ n and OJ ~ 0,

I
( . )I f i-jw Pm" JW:;::: n.m. n+m+ 1

e - ."'" , ,W.
qm,,(jW) (n + mI. (n +m + 1).

Proof From Proposition 1, we have for m, n E No and OJ ~ 0

-jw (.) (. )1:;::: n!m! ,,+m+l
Ie qm"Jw-Pm"Jw ""'(n+m+l)!w .

Also, Corollary 4 gives

1 1
----~--­

Iqm,,(jw)1 (m+n)!

(13 )

when m + 2 ~ n. Hence, the result follows. I
The result in Theorem 5 is tight from the derivation shown with equality

holding when w = O. The upper bound in Theorem 5 corresponds to exactly
the first non-zero coefficient of the error in terms of its Maclaurin series
expansion. For example, with m = 2 and n = 3, we have

I
-'w P23(jW) I 1 6 37 8 ' 47153 10

e
J

-q23(jW) =7200 w -5880000 OJ T518616000000w -''',
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while the RHS of (13) gives

LAM AND CHUNG

3!2! 3+2+ 1 1 6-------- OJ =-- W .
(3 + 2)! (3 + 2 + I)! 7200

In passing, it is remarked that when n - 2~ m ~ n,

I
e - jOJ - Pmn (jOJ) I ::::: 2

qmn(jw) ""
(14)

which results from the A-acceptability of Pade approximations to e Z
, since

(see Wanner et al. [7]). In this case, it is obvious that the bound in (13)
is weak for large OJ. Indeed, this is generally true for all cases when OJ
is large since the LHS of (13) is at most of order OJm - n. Based on the
observation in (14), we state the following proposition as a consequence.

PROPOSITION 6. For m, n E No such that n - 2~ m ~ n and OJ? 0,

I
(. )I ( , I )-jOJ Pmn JW ::::: . 2 n.m. n+m+le - ""mIn, OJ.

qmn(jW) (n + m)!(n + m + I)!
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